Cambridge International AS \& A Level

CANDIDATE NAME

\square

CANDIDATE NUMBER				

CHEMISTRY

9701/52
Paper 5 Planning, Analysis and Evaluation
February/March 2021
1 hour 15 minutes

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.

INFORMATION

- The total mark for this paper is 30 .
- The number of marks for each question or part question is shown in brackets [].

1 Zinc metal reacts with aqueous copper(II) sulfate.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{ZnSO}_{4}(\mathrm{aq})
$$

The enthalpy change of this reaction, ΔH, can be determined by adding excess zinc powder to a measured volume of $0.500 \mathrm{moldm}^{-3}$ aqueous copper(II) sulfate.

The temperature of $25.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{moldm}^{-3}$ aqueous copper(II) sulfate is recorded for three minutes. At four minutes 3 g , an excess, of zinc powder is added and the mixture is continuously stirred. The temperature is recorded at times shown in the table.

time $/ \mathrm{min}$	0	1	2	3		$4 \frac{1}{2}$	5	$5 \frac{1}{2}$	6	$6 \frac{1}{2}$	7	8	9	10
temperature ${ }^{\circ} \mathrm{C}$	18	19.5	19.5	19.5		32.5	38	36	34	33	32.5	31.5	31	31

(a) Use the results table to deduce the graduations on the thermometer that is used to record these temperature readings.
\qquad
(b) Draw a labelled diagram of the apparatus set up at one minute.
(c) Plot a graph of temperature (y-axis) against time (x-axis). Use a cross (x) to plot each data point. Draw a line of best fit during cooling.

Extrapolate the cooling curve back to four minutes and determine the temperature change during the reaction.

temperature change $=$ \qquad ${ }^{\circ} \mathrm{C}$ [2]
(d) Use the formula $\Delta H=-m c \Delta T$ to determine the enthalpy change of reaction, ΔH, in $\mathrm{kJ} \mathrm{mol}^{-1}$.

Assume:

- \quad mass of $1.00 \mathrm{~cm}^{3}$ of solution $=1.00 \mathrm{~g}$
- $c=4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$.
$\Delta H=$ \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$
(e) Heat loss is a major source of error in the results of this experiment.

Suggest how the following changes would affect the amount of heat loss, if at all.
Explain your answer in each case.
(i) The mass of zinc is doubled.
effect on heat loss \qquad
explanation \qquad
\qquad
(ii) The concentration of $25.0 \mathrm{~cm}^{3}$ of aqueous copper(II) sulfate is doubled. The amount of zinc used is still an excess.
effect on heat loss \qquad
explanation \qquad
\qquad
(iii) The volume of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous copper(II) sulfate is doubled. The amount of zinc used is still an excess.
effect on heat loss \qquad
explanation \qquad
\qquad

2 Ethanedioic acid is a white crystalline solid.
If excess aqueous potassium hydroxide, $\mathrm{KOH}(\mathrm{aq})$, is added to dilute ethanedioic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$, full neutralisation occurs and potassium ethanedioate, $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$, forms.

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

If a small amount of potassium hydroxide is added, partial neutralisation takes place and not all H^{+}ions in the acid are replaced by K^{+}ions.

Instead an acid salt forms, which crystallises to form a solid with the formula $\mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{c} \cdot d \mathrm{H}_{2} \mathrm{O}$.
The letters a, b and c represent a ratio of the numbers of species present in the compound and may not necessarily be whole numbers. The relative number of water molecules associated with one formula of the compound is represented by d.

A student attempted to determine the values of a, b, c and d in a sample of an acid salt, $\mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{c} \cdot d \mathrm{H}_{2} \mathrm{O}$.
(a) The student wants to make a $250.0 \mathrm{~cm}^{3}$ aqueous solution of $\mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{c} \cdot d \mathrm{H}_{2} \mathrm{O}$, solution \mathbf{A}.

The student adds 1.89 g of $\mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{\bullet} \cdot d \mathrm{H}_{2} \mathrm{O}$ into a $100 \mathrm{~cm}^{3}$ beaker.
Describe the next steps the student should take to make solution \mathbf{A}, containing exactly 1.89 g of $\mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{c} \cdot d \mathrm{H}_{2} \mathrm{O}$.

Give the name and capacity of the apparatus which should be used and describe how the student should ensure the volume is exactly $250.0 \mathrm{~cm}^{3}$.

Write your answer using a series of numbered steps.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(b) Determining the number of moles of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ present

Ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})$, react with manganate(VII) ions, $\mathrm{MnO}_{4}^{-}(\mathrm{aq})$, in acidified conditions, as shown.

$$
5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+10 \mathrm{CO}_{2}(\mathrm{~g})
$$

$\mathrm{MnO}_{4}^{-}(\mathrm{aq})$ ions are a very deep purple in colour. All other species appear colourless.
The reaction takes place above a temperature of $70^{\circ} \mathrm{C}$.
The student carries out a redox titration using the following steps.
step 1 The student rinses and fills a burette with $0.0200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{MnO}_{4}^{-}(\mathrm{aq})$.
step 2 The student uses a pipette to transfer $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{A} into a conical flask.
step 3 The student adds $20 \mathrm{~cm}^{3}$, an excess, of $0.5 \mathrm{moldm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ to the conical flask.
step 4 The conical flask is heated until a temperature of about $80^{\circ} \mathrm{C}$ is reached.
step 5 The student adds $\mathrm{MnO}_{4}^{-}(\mathrm{aq})$ from the burette until an end-point is reached.
The student repeats the titration until concordant readings are achieved.

	rough	titration 1	titration 2	titration 3
final burette reading $/ \mathrm{cm}^{3}$	25.05	24.50	26.60	24.50
initial burette reading $/ \mathrm{cm}^{3}$	0.10	0.10	0.10	0.10
titre $/ \mathrm{cm}^{3}$	25.05	24.40	26.50	24.40

The student determines the average titre to be $24.40 \mathrm{~cm}^{3}$.
(i) When emptying the pipette in step 2, the student touches the surface of the solution in the flask with the tip of the pipette.

Suggest why the student does this.
\qquad
\qquad
(ii) Suggest the most appropriate piece of apparatus to measure $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ in step 3.
\qquad
(iii) Suggest why the student starts each titration with an initial burette reading of $0.10 \mathrm{~cm}^{3}$ rather than the usual $0.00 \mathrm{~cm}^{3}$.
(iv) What is meant by the term concordant readings?
(v) State the change of colour seen in the mixture in the conical flask at the end-point.
\qquad to
(vi) Determine the number of moles of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions in the $250.0 \mathrm{~cm}^{3}$ of solution \mathbf{A}, $\mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{c} \cdot d \mathrm{H}_{2} \mathrm{O}$.

Give your answer to three significant figures.
moles of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions in $250.0 \mathrm{~cm}^{3}$ of solution $\mathrm{A}=$ \qquad mol [3]

If you were unable to calculate an answer to (b)(vi), then you may use the value $1.18 \times 10^{-2} \mathrm{~mol}$ for your calculations in (c). This is not the correct value.
(c) The student then does an acid-base titration of solution \mathbf{A} to determine the values of a and b in $\mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{c} \cdot d \mathrm{H}_{2} \mathrm{O}$.
(i) Suggest the name of a suitable reagent to use in this titration.
\qquad
(ii) The student finds the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ in solution \mathbf{A} is $6.10 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$.

Use this value and your answer to (b)(vi) to determine the ratio of c to b to two decimal places.

Then deduce the value of a in $\mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{c} \cdot d \mathrm{H}_{2} \mathrm{O}$ to two decimal places.

$$
\text { ratio } c: b=1 \text { : }
$$

\qquad

$$
\text { value of } a=
$$

\qquad
(iii) Use your answer to (b)(vi), (c)(ii) and other information given in the question to determine the mass of 1 mol of $\mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{c} \cdot d \mathrm{H}_{2} \mathrm{O}$ and hence determine the value of d to the nearest whole number.

$$
\left[A_{r}: \mathrm{K}, 39.1 ; \mathrm{H}, 1.0 ; \mathrm{C}, 12.0 ; \mathrm{O}, 16.0\right]
$$

If you were unable to calculate an answer to (c)(ii), then you may use $a=0.30$ and ratio $c: b=1: 1.60$. These are not the correct values.

$$
\text { mass of } 1 \mathrm{~mol} \text { of } \mathrm{K}_{a} \mathrm{H}_{b}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{c} \cdot d \mathrm{H}_{2} \mathrm{O}=\text {. }
$$

\qquad
(d) A second student uses another method to determine d. Crystals of the sample, with known values of a, b and c, are heated in a crucible to remove the water molecules.

Construct a results table to show the readings that would need to be taken during this experiment.

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

 Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

